Monadic Second-Order Logic and Transitive Closure Logics over Trees

نویسندگان

  • Hans-Jörg Tiede
  • Stephan Kepser
چکیده

Model theoretic syntax is concerned with studying the descriptive complexity of grammar formalisms for natural languages by defining their derivation trees in suitable logical formalisms. The central tool for model theoretic syntax has been monadic second-order logic (MSO). Much of the recent research in this area has been concerned with finding more expressive logics to capture the derivation trees of grammar formalisms that generate non-context-free languages. The motivation behind this search for more expressive logics is to describe formally certain mildly context-sensitive phenomena of natural languages. Several extensions to MSO have been proposed, most of which no longer define the derivation trees of grammar formalisms directly, while others introduce logically odd restrictions. We therefore propose to consider first-order transitive closure logic. In this logic, derivation trees can be defined in a direct way. Our main result is that transitive closure logic, even deterministic transitive closure logic, is more expressive in defining classes of tree languages than MSO. (Deterministic) transitive closure logics are capable of defining non-regular tree languages that are of interest to linguistics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing weighted MSO for trees by branching transitive closure logics

We introduce the branching transitive closure operator on weighted monadic second-order logic formulas where the branching corresponds in a natural way to the branching inherent in trees. For arbitrary commutative semirings, we prove that weighted monadic second order logics on trees is equivalent to the definability by formulas which start with one of the following operators: (i) a branching t...

متن کامل

Properties of Binary Transitive Closure Logics over Trees

Binary transitive closure logic (FO∗ for short) is the extension of first-order predicate logic by a transitive closure operator of binary relations. Deterministic binary transitive closure logic (FOD∗) is the restriction of FO∗ to deterministic transitive closures. It is known that these logics are more powerful than FO on arbitrary structures and on finite ordered trees. It is also known that...

متن کامل

Complete Axiomatizations of Fragments of Monadic Second-Order Logic on Finite Trees

We consider a specific class of tree structures that can represent basic structures in linguistics and computer science such as XML documents, parse trees, and treebanks, namely, finite node-labeled sibling-ordered trees. We present axiomatizations of the monadic second-order logic (MSO), monadic transitive closure logic (FO(TC)) and monadic least fixed-point logic (FO(LFP)) theories of this cl...

متن کامل

The Boundary Between Decidability and Undecidability for Transitive-Closure Logics

To reason effectively about programs it is important to have some version of a transitive closure operator so that we can describe such notions as the set of nodes reachable from a program’s variables. On the other hand, with a few notable exceptions, adding transitive closure to even very tame logics makes them undecidable. In this paper we explore the boundary between decidability and undecid...

متن کامل

On an Efficient Decision Procedure for Imperative Tree Data Structures

We present a new decidable logic called TREX for expressing constraints about imperative tree data structures. In particular, TREX supports a transitive closure operator that can express reachability constraints, which often appear in data structure invariants. We show that our logic is closed under weakest precondition computation, which enables its use for automated software verification. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 165  شماره 

صفحات  -

تاریخ انتشار 2006